Package 'BINCOR'

Title: Estimate the Correlation Between Two Irregular Time Series
Description: Estimate the correlation between two irregular time series that are not necessarily sampled on identical time points. This program is also applicable to the situation of two evenly spaced time series that are not on the same time grid. 'BINCOR' is based on a novel estimation approach proposed by Mudelsee (2010, 2014) to estimate the correlation between two climate time series with different timescales. The idea is that autocorrelation (AR1 process) allows to correlate values obtained on different time points. 'BINCOR' contains four functions: bin_cor() (the main function to build the binned time series), plot_ts() (to plot and compare the irregular and binned time series, cor_ts() (to estimate the correlation between the binned time series) and ccf_ts() (to estimate the cross-correlation between the binned time series).
Authors: Josué M. Polanco-Martínez [aut, cph, cre], Mikko Korpela [ctb, trl], Aalto University [cph], Manfred Mudelsee [ctb]
Maintainer: Josué M. Polanco-Martínez <[email protected]>
License: GPL (>= 2)
Version: 0.2.0
Built: 2024-11-21 03:03:31 UTC
Source: https://github.com/cran/BINCOR

Help Index


Estimate the Correlation Between Two Irregular Time Series

Description

'BINCOR' estimate the correlation between two irregular time series that are not necessarily sampled on identical time points. This program is also applicable to the situation of two evenly spaced time series that are not on the same time grid. 'BINCOR' is based on a novel estimation approach proposed by Mudelsee (2010, 2014) to estimate the correlation between two climate time series with different timescales. The idea is that autocorrelation (AR1 process) allows to correlate values obtained on different time points. The outputs (plots) can be displayed in the screen or can be saved as PNG, JPG or PDF formats. The 'BINCOR' package also provides two examples with real data: instrumental (ENSO.dat and NHSST.dat data sets) and paleoclimatic (ID31.dat and ID32.dat data sets) time series to exemplify its use.

Details

Package: BINCOR
Type: Package
Version: 0.2
Date: 2018-05-18
License: GPL (>= 2)
LazyLoad: yes

BINCOR package contains four functions: the bin_cor (the main function to build the binned time series), the plot_ts (to plot and compare the irregular and binned time series, the cor_ts (to estimate the correlation between the binned time series) and the ccf_ts (to estimate the cross-correlation between the binned time series).

Note

Dependencies: dplR and pracma.

Author(s)

Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: [email protected]

Acknowledgement:
JMPM was funded by a Basque Government post-doctoral fellowship.

References

Borchers, H. W. (2015). pracma: Practical Numerical Math Functions. R package version 1.8.8. URL https://CRAN.R-project.org/package=pracma

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., Buras, A., Cecile, J., Mudelsee, M., Schulz, M. (2015). Den- drochronology Program Library in R. R package version 1.6.3. URL https://CRAN.R-project.org/package=dplR

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer.

Mudelsee, M. (2014). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Second Edition. Springer.

Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced time series. Ms. under review (second round).


Binned correlation

Description

The bin_cor function convert an irregular time series to a binned one and its parameters are described in the following lines.

Usage

bin_cor(ts1, ts2, FLAGTAU=3, ofilename)

Arguments

ts1, ts2

ts1 and ts2 are the unevenly spaced time series.

FLAGTAU

FLAGTAU defines the method used to estimate the persistence or memory of the unevenly spaced time series. Options (by default is 3):
If 1 then est_tau = tau_x + tau_y [Eq. 7.44, Mudelsee (2010, 2014)].
If 2 then est_tau = max(tau_x, tau_y) [Eq. 7.45, Mudelsee (2010, 2014)].
If 3 then est_tau = dist_x_y/ln(a_x_y_est) [Eq. 7.48, Mudelsee (2010, 2014).]

ofilename

The output filename (ASCII format) containing the binned time series.

Details

The bin_cor function convert an irregular times series to a binned time series and depends on the R dplR package to carry out this task. dplR (redfitTauest function) estimate the persistence contained in the irregular climate time series by means of the method of Mudelsee (2002).

Value

A list of 16 elements:

Binned_time_series

An object containing the binned time series.

Auto._cor._coef._ts1

The autocorrelation for the binned time series number 1.

Persistence_ts1

The persistence or memory for the binned time series number 1.

Auto._cor._coef._ts2

The autocorrelation for the binned time series number 2.

Persistence_ts2

The persistence or memory for the binned time series number 2.

bin width

The bin width.

Number_of_bins

The number of bins.

Average spacing

The mean value of the times for the binned time series.

VAR. ts1

Variance of ts1

VAR. bin ts1

Variance of the binned ts1.

VAR. ts2

Variance for ts2.

VAR. bin ts2

Variance of the binned ts2.

VAR. ts1 - VAR bints1

Variance of ts1 minus variance of the binned ts1.

VAR. ts2 - VAR bints2

Variance of ts2 minus variance of the binned ts2.

% of VAR. lost ts1

Percentage of variance lost for ts1.

% of VAR. lost ts2

Percentage of variance lost for ts2.

Note

Needs dplR (redfitTauest function) to estimate the persistence contained in the irregular time series by means of the method of Mudelsee (2002). Please, look at the code tauest_dplR.R in the directory R of our BINCOR package.

Author(s)

Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: [email protected]

References

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., Buras, A., Cecile, J., Mudelsee, M., Schulz, M. (2015). Dendrochronology Program Library in R. R package version 1.6.3. URL https://CRAN.R-project.org/package=dplR.

Mudelsee, M. (2002). TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers & Geosciences 28 (1), 69–72.
URL http://www.climate-risk-analysis.com/software/.

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer.

Mudelsee, M. (2014). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Second Edition. Springer.

Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced time series. Ms. under review (second round).

Examples

#####################################################################
 #::  Figure 1 D (Polanco-Martínez et al. (2018), (mimeo)). 
 #####################################################################
 library("BINCOR") 

 #####################################################################
 #:: Loading the time series under analysis: example 1 (ENSO vs. NHSST) 
 #####################################################################
 data(ENSO) 
 data(NHSST)

 #####################################################################
 # Testing our bin_cor function
 #####################################################################
 bincor.tmp    <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
 binnedts      <- bincor.tmp$Binned_time_series

Cross-correlation

Description

The ccf_ts function estimates and plots the cross-correlation between the binned time series. ccf_ts has an option to remove the linear trend of the time series under analysis (other pre-processing methods could be used) and contains several parameters that are described in the following lines.

Usage

ccf_ts(bints1, bints2, lagmax=NULL, ylima=-1, ylimb=1, rmltrd="N", RedL=T, 
 device="screen", Hfig, Wfig, Hpdf, Wpdf, resfig, ofilename)

Arguments

bints1, bints2

The bints1 and bints2 are the binned time series.

lagmax

This parameter indicates the maximum lag for which the cross-correlation is calculated (its value depends on the length of the data set).

ylima, ylimb

This parameters define the extremes of the range in which the CCF will be plotted.

rmltrd

This is the option used to remove the linear trend in the time series under study (by default the linear trend is not removed, but it can be activated with the option “Y” or “y”).

RedL

RedL plots a right red line to highlight the correlation coefficient at the lag-0 (the default option is TRUE).

device

The type of the output device (by default the option is “screen”, and the other options are “jpg”, “png” and “pdf”) for the scatter plot of the binned time series.

Hfig

The height for the CCF plot in “jpg” or “png” format.

Wfig

The width for the CCF plot in “jpg” or “png”format.

Hpdf

The height for the CCF plot in “pdf” format.

Wpdf

The width for the CCF plot in “pdf” format.

resfig

resfig is the plot resolution in “ppi” (by default R does not record a resolution in the image file, except for BMP) for the CCF plot (“jpg” or “png” formats), an adequate value could be 150 ppi.

ofilename

The output filename (CCF plot) for the CCF estimated of the binned time series.

Details

The ccf_ts estimate the cross-correlation between two binned time series by means of the R native function ccf (package:stats).

Value

Output: an object of the form ccf containing the correlation coefficients for the defined number of lags (lagmax) and the statistical significance.

Author(s)

Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: [email protected]

References

Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced time series. Ms. under review (second round).

Examples

#####################################################################
 #::  Figure 5 (Polanco-Martínez et al. (2018), (mimeo)). 
 #####################################################################
 library("BINCOR") 
 library("pracma")

 #####################################################################
 #:: Loading the time series under analysis: example 2 (pollen ACER)  
 #####################################################################
 data(MD04_2845_siteID31)
 data(MD95_2039_siteID32)

 #####################################################################
 # Computing the binned time series though our bin_cor function
 #####################################################################
 bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
 binnedts   <- bincor.tmp$Binned_time_series

 # To avoid NA's values  
 bin_ts1    <- na.omit(bincor.tmp$Binned_time_series[,1:2])
 bin_ts2    <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)]) 

 #####################################################################
 # Testing our ccf_ts function
 #####################################################################
 # Screen 
 ccf_ts(bin_ts1, bin_ts2, RedL=TRUE, rmltrd="y") 

 # PDF format  
 ccf_ts(bin_ts1, bin_ts2, RedL=TRUE, rmltrd="y", device="pdf", Hpdf=6, 
  Wpdf=9, resfig=300, ofilename="ccf_ID31_ID32_res")
 
 # JPG format 
 ccf_ts(bin_ts1, bin_ts2, RedL=TRUE, rmltrd="y", device="jpg", 
  Hfig=900, Wfig=1200, resfig=150, ofilename="ccf_ID31_ID32_res")

Bi-variate correlation

Description

The cor_ts function estimates the correlation between the binned time series. cor_ts estimates three types of correlation coefficients: Pearson’s correlation, Spearman’s and Kendall’s rank correlations by means of the R native function cor.test (package:stats). The cor_ts function has an option to remove the linear trend of the time series under analysis (other pre-processing methods could be used) and its parameters are described in the following lines.

Usage

cor_ts(bints1, bints2, varnamets1="NULL", varnamets2="NULL", KoCM, rmltrd="N", 
 device="screen", Hfig, Wfig, Hpdf, Wpdf, resfig, ofilename)

Arguments

bints1, bints2

The bints1 and bints2 are the binned time series.

varnamets1, varnamets2

varnamets[1][2] are the names of the variables under study.

KoCM

KoCM indicates the correlation estimator: pearson for Pearson (the option by default), spearman for Spearman and kendall for Kendall.

rmltrd

This is the option used to remove the linear trend in the time series under study (by default the linear trend is not removed, but it can be activated with the option “Y” or “y”).

device

The type of the output device (by default the option is “screen”, and the other options are “jpg”, “png” and “pdf”) for the scatter plot for the binned time series.

Hfig

The height for the scatter plot in “jpg” or “png” format.

Wfig

The width for the scatter plot in “jpg” or “png” format.

Hpdf

The height for the scatter plot in “pdf” format.

Wpdf

The width for the scatter plot in “pdf” format.

resfig

resfig is the resolution in “ppi” (by default R does not record a resolution in the image file, except for BMP) for the scatter plot (“jpg” or “png” formats), an adequate value could be 150 ppi.

ofilename

The output filename for the scatter plot of the binned time series.

Details

The cor_ts estimate the correlation between two binned time series by means of the R native function cor.test (package:stats).

Value

Output: an object of the form cor.test containing the correlation coefficient and the statistical significance.

Output plot: screen or 'ofilename + .png, .jpg or .pdf'.

Author(s)

Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: [email protected]

References

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer.

Mudelsee, M. (2014). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Second Edition. Springer.

Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced time series. Ms. under review (second round).

Examples

#####################################################################
 #::  Figure 2 (Polanco-Martínez et al. (2018), (mimeo)). 
 #####################################################################
 library("BINCOR")  
 library("pracma")

 #####################################################################
 #:: Loading the time series under analysis: example 1 (ENSO vs. NHSST) 
 #####################################################################
 data(ENSO) 
 data(NHSST)

 #####################################################################
 # Computing the binned time series though our bin_cor function 
 #####################################################################
 bincor.tmp    <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
 binnedts      <- bincor.tmp$Binned_time_series

 #####################################################################
 # Testing our cor_ts function: cor_ts.R
 #####################################################################
 # screen (scatterplot) and Pearson  
 cor_ts(binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", "SST NH Mean", 
  KoCM="pearson", rmltrd="y") 

 # PDF format (scatterplot) and Kendall 
 cor_ts(binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", "SST NH Mean", 
  KoCM="kendall", rmltrd="y", device="pdf", Hpdf=6, Wpdf=9, resfig=300, 
  ofilename="scatterplot_ENSO_SST") 

 # JPG format (scatterplot) and Spearman  
 cor_ts( binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", "SST NH Mean", 
  KoCM="spearman", rmltrd="y", device="jpg", Hfig=900, Wfig=1200, 
  resfig=150, ofilename="scatterplot_ENSO_SST")

Equatorial Pacific SST anomalies from El Niño 3 region.

Description

The data set ENSO.dat contains an irregular time series (ENSO) with 125 data points and an average temporal spacing of 1.24 years covering the time interval 1850-2006. The ENSO data set come from Mann et al. (2009). The data sets can be obtained from the following URL http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/ (NINO3 full).

Usage

data(ENSO)

Format

One file in ASCII format containing 125 elements and two variables (time and ENSO)

Source

http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/

Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326 (5957), 1256–1260.


Unevenly-spaced pollen record from the marine sediments core (MD04-2845) collected on the southwestern European margin.

Description

The data set ID31.dat contains one paleoclimate (pollen percentages) time series spanning a time interval between 73,000 and 15,000 years before present (BP), thus covering the last glacial period (LGP). This data set come from a global pollen and charcoal database (Sánchez Goñi et al., 2017) developed in the framework of the INQUA International Focus Group ACER (Abrupt Climate Changes and Environmental Responses). The paleoclimate time series come from the site MD04-2845 and contains 77 elements (Sánchez Goñi et al., 2008, 2017).

Usage

data(MD04_2845_siteID31)

Format

One file in ASCII format containing 77 elements and two variables (time and pollen percentages).

Source

https://doi.pangaea.de/10.1594/PANGAEA.870867

Sánchez Goñi, M. F., Landais, A., Fletcher, W. J., Naughton, F., Desprat, S., Duprat, J. (2008). Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27 (11), 1136–1151.

Sánchez Goñi, M. F., Desprat, S., Daniau, A.L., Bassinot, F. C., Polanco Martínez, J. M., Harrison, S. P., Allen, J. R., Anderson, R. S., Behling, H., Bonnefille, R., et al. (2017). The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data 9 (2), 679.
URL https://www.earth-syst-sci-data.net/9/679/2017/.


Unevenly-spaced pollen record from the marine sediments core (MD95-2039) collected on the southwestern European margin.

Description

The data set ID32.dat contains a paleoclimate (pollen percentages) time series spanning a time interval between 73,000 and 15,000 years before present (BP), thus covering the last glacial period (LGP). This data set come from a global pollen and charcoal database (Sánchez Goñi et al., 2017) developed in the framework of the INQUA International Focus Group ACER (Abrupt Climate Changes and Environmental Responses). The time series come from the site MD95-2039 and contains 141 elements (Roucoux et al., 2005; Sánchez Goñi et al., 2017).

Usage

data(MD95_2039_siteID32)

Format

One file in ASCII format containing and 141 elements and two variables (time and pollen percentages).

Source

https://doi.pangaea.de/10.1594/PANGAEA.870867
Roucoux, K., De Abreu, L., Shackleton, N., Tzedakis, P. (2005). The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews 24 (14), 1637–1653.

Sánchez Goñi, M. F., Desprat, S., Daniau, A.L., Bassinot, F. C., Polanco Martínez, J. M., Harrison, S. P., Allen, J. R., Anderson, R. S., Behling, H., Bonnefille, R., et al. (2017). The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data 9 (2), 679.
URL https://www.earth-syst-sci-data.net/9/679/2017/.


Northern Hemisphere (NH) sea surface temperature (SST) anomalies.

Description

The data set NHSST.dat contains an irregular time series (NH-SST) with 125 data points and an average temporal spacing of 1.24 years covering the time interval 1850-2006. The NH-SST data set come from HadCRUT3 (Brohan et al., 2006). The data sets can be obtained from the following URL http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/ (Northern Hemisphere full).

Usage

data(NHSST)

Format

One file in ASCII format containing 125 elements and two variables (time and NHSST)

Source

http://www.meteo.psu.edu/holocene/public_html/supplements/MultiproxySpatial09/results/

Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F., Jones, P. D. (2006). Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. Journal of Geophysical Research: Atmospheres 111 (D12).


Plot time series

Description

The plot_ts function plot and compare the irregular and the binned time series. plot_ts has several parameters that are described in the following lines.

Usage

plot_ts(ts1, ts2, bints1, bints2, varnamets1="", varnamets2="", colts1=1, colts2=1, 
 colbints1=2, colbints2=2, ltyts1=1, ltyts2=1, ltybints1=2, ltybints2=2, 
 device="screen", Hfig, Wfig, Hpdf, Wpdf, resfig, ofilename)

Arguments

ts1, ts2

ts1 and ts2 are the unevenly spaced time series.

bints1, bints2

The bints1 and bints2 are the binned time series.

varnamets1, varnamets2

varnamets[1][2] are the names of the variables under study.

colts1, colts2

colts[1][2] are the colours for the time series (irregular) under study (by default both curves are in black).

colbints1, colbints2

colbints[1][2] are the colours of the binned time series (by default both curves are in red).

ltyts1, ltyts2

ltyts[1][2] are the type of lines to be plotted for the irregular time series (by default is 1, i.e., solid). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed.

ltybints1, ltybints2

ltybints[1][2] are the type of lines to be plotted for the binned time series (by default is 2, i.e., dashed). 1 = solid, 2 = dashed, 3 = dotted, 4 = dot-dashed, 5 = long-dashed, 6 = double-dashed.

device

The type of the output device (by default the option is “screen”, and the other options are “jpg”, “png” and “pdf”).

Hfig

The height for the plot in “jpg” or “png” format.

Wfig

The width for the plot in “jpg” or “png” format.

Hpdf

The height for the plot in “pdf” format.

Wpdf

The width for the plot in “pdf” format.

resfig

resfig is the plot resolution in 'ppi' (by default R does not record a resolution in the image file, except for BMP), an adequate value could be 150 ppi.

ofilename

The output filename for the plot.

Details

The plot_ts function is used to plot the irregular vs. the binned time series and this function uses the native R function “plot” (package:graphics).

Value

Output:

Output plot: screen or 'ofilename + .png, .jpg or .pdf'.

Author(s)

Josué M. Polanco-Martínez (a.k.a. jomopo).
BC3 - Basque Centre for Climate Change, Bilbao, SPAIN.
EPOC UMR CNRS 5805 - U. de Bordeaux, Pessac, FRANCE.
Web1: https://scholar.google.es/citations?user=8djLIhcAAAAJ&hl=en.
Web2: http://www.researchgate.net/profile/Josue_Polanco-Martinez.
Email: [email protected]

References

Polanco-Martínez, J.M., Medina-Elizalde, M.A., Sánchez Goñi, M.F., M. Mudelsee. (2018). BINCOR: an R package to estimate the correlation between two unevenly spaced series. Ms. under review (second round).

Examples

#####################################################################
 #::  Figure 1 (Polanco-Martínez et al. (2018), (mimeo)). 
 #####################################################################
 library("BINCOR") 

 #####################################################################
 #:: Loading the time series under analysis: example 1 (ENSO vs. NHSST) 
 #####################################################################
 data(ENSO) 
 data(NHSST)

 #####################################################################
 # Computing the binned time series though our bin_cor_function.R 
 #####################################################################
 bincor.tmp    <- bin_cor(ENSO.dat, NHSST.dat, FLAGTAU=3, "output_ENSO_NHSST.tmp")
 binnedts      <- bincor.tmp$Binned_time_series

 #####################################################################
 # Testing our plot_ts function
 #####################################################################
 # "Screen" 
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="screen")
 
 # PDF format
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="pdf", 
  Hpdf=6, Wpdf=9, resfig=300, ofilename="plot_ts_RAW_BIN_enso_sst") 

 # PNG format 
 plot_ts(ENSO.dat, NHSST.dat, binnedts[,1:2], binnedts[,c(1,3)], "ENSO-Nino3", 
  "SST NH Mean", colts1=1, colts2=2, colbints1=3, colbints2=4, device="png", 
  Hfig=900, Wfig=1200, resfig=150, ofilename="plot_ts_RAW_BIN_enso_sst") 

 #####################################################################
 #::  Figure 4 (Polanco-Martínez et al. (2017), (mimeo)). 
 #####################################################################

 #####################################################################
 #:: Loading the time series under analysis: example 2 (pollen ACER)  
 #####################################################################
 data(MD04_2845_siteID31)
 data(MD95_2039_siteID32)

 #####################################################################
 # Computing the binned time series though our bin_cor function 
 #####################################################################
 bincor.tmp <- bin_cor(ID31.dat, ID32.dat, FLAGTAU=3, "salida_ACER_ABRUPT.tmp")
 binnedts   <- bincor.tmp$Binned_time_series

 # To avoid NA's values  
 bin_ts1    <- na.omit(bincor.tmp$Binned_time_series[,1:2])
 bin_ts2    <- na.omit(bincor.tmp$Binned_time_series[,c(1,3)]) 

 #####################################################################
 # Testing our plot_ts function: plot_ts.R
 #####################################################################
 # "Screen" 
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4,
  device="screen") 

 # PDF format
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4, 
  device="pdf", Hpdf=6, Wpdf=9, resfig=300, ofilename="ts_ACER_ABRUPT") 

 # PNG format 
 plot_ts(ID31.dat, ID32.dat, bin_ts1, bin_ts2, "MD04-2845 (Temp. forest)", 
  "MD95-2039 (Temp. forest )", colts1=1, colts2=2, colbints1=3, colbints2=4, 
  device="png",  Hfig=900, Wfig=1200, resfig=150, ofilename="ts_ACER_ABRUPT")

Minimization - least square

Description

The redfitMinls function is used by the redfitTauest function to calculate the persistence for unevenly spaced climate time series under study. redfitTauest is included in the redfit function of the R dplR package (Bunn et al. 2015).

Usage

redfitMinls(t, x)

Arguments

t, x

t and x are the times and the variables for an unevenly spaced time series.

Details

The redfitMinls function minimize (optimize) by least squares to obtain some parameters of the AR1 model used to estimate the persistence through the method of Mudelsee (2002). More information about redfitMinls function can be found in Bunn et al. (2015) and Mudelsee (2002).

Note

Needs dplR to estimate the persistence contained in the irregular time series by means of the method of Mudelsee (2002). Please, for more details look at the code tauest_dplR.R in the directory R of our BINCOR package.

Author(s)

Mikko Korpela.
2013-2015 Aalto University, FINLAND.
Web: https://github.com/mvkorpel.
Email: [email protected]

References

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., Buras, A., Cecile, J., Mudelsee, M., Schulz, M. (2015). Dendrochronology Program Library in R. R package version 1.6.3. URL https://CRAN.R-project.org/package=dplR.

Mudelsee, M. (2002). TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers & Geosciences 28 (1), 69–72.
URL http://www.climate-risk-analysis.com/software/.

Schulz, M., Mudelsee M. (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28(3), 421–426.
URL https://www.marum.de/Michael-Schulz/Michael-Schulz-Software.html.

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer.

Mudelsee, M. (2014). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Second Edition. Springer.


Tauest

Description

The redfitTauest function is used by bin_cor function to calculate the persistence for irregular climate time series under study. redfitTauest is included in the redfit function that come from the R dplR package (Bunn et al. 2015).

Usage

redfitTauest(t, x)

Arguments

t, x

t and x are the times and the variables for an unevenly spaced time series.

Details

The redfitTauest function estimate the persistence of an irregular times series through the method of Mudelsee (2002). redfitTauest function is used by the dplR package to estimate the persistence contained in irregular climate time series. More information about redfitTauest function can be found in Bunn et al. (2015) and Mudelsee (2002).

Note

Needs dplR to estimate the persistence contained in the irregular time series by means of the method of Mudelsee (2002). Please, look at the code tauest_dplR.R in the directory R of our BINCOR package.

Author(s)

Mikko Korpela .
2013-2015 Aalto University, FINLAND.
Web: https://github.com/mvkorpel.
Email: [email protected]

References

Bunn, A., Korpela, M., Biondi, F., Campelo, F., Mérian, P., Qeadan, F., Zang, C., Buras, A., Cecile, J., Mudelsee, M., Schulz, M. (2015). Dendrochronology Program Library in R. R package version 1.6.3. URL https://CRAN.R-project.org/package=dplR.

Mudelsee, M. (2002). TAUEST: A computer program for estimating persistence in unevenly spaced weather/climate time series. Computers & Geosciences 28 (1), 69–72.
URL http://www.climate-risk-analysis.com/software/.

Schulz, M., Mudelsee M. (2002). REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28(3), 421–426.
URL https://www.marum.de/Michael-Schulz/Michael-Schulz-Software.html.

Mudelsee, M. (2010). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer.

Mudelsee, M. (2014). Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Second Edition. Springer.